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Warsaw, Poland 
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Abstract. The properties of the electromagnetic field around a hydrogen atom in the excited 
2p,,, state are studied in relativistic quantum electrodynamics. The field theory definition 
of an excited state is introduced. This definition is used to find the time-dependent energy 
density and angular momentum density associated with the virtual photon cloud surround- 
ing the atom as well as with real wave absorbed by the atom and emitted by it. 

1. Introduction 

The electromagnetic field surrounding the hydrogen atom-an object which consists 
of charged particles-has been investigated in the past from different points of view. 
Lately, particular attention is being paid to the, so called, virtual photon cloud in the 
case when atom is in the ground state (Compagno et a1 1983, 1987, Passante et a1 
1985, Passante and Power 1987, Persico and Power 1986). In this situation the real 
wave cannot be emitted and only virtual processes, originating from quantum nature 
of the source, come into play. The spatial properties of the cloud have mainly been 
investigated in the language of quantum optics. In the preceding paper (Radozycki 
1990) we have applied to this problem the full relativistic quantum electrodynamics. 
We have calculated the two characteristics of the cloud: the electromagnetic energy 
density distribution (;( E ( x ) ’  + B( x)’)) and the angular momentum density distribution 
(x x ( E ( x )  x B ( x ) ) )  in the space around the atom. Here we would like to develop the 
methods of this approach and to apply them to the situation in which the atom is in 
an excited state. The situation with the excited state is more interesting as we have to 
deal now with a dynamical problem. At the same time, however, it is much more 
complicated. All higher atomic states in quantum electrodynamics become unstable 
on account of interaction with the fluctuating electromagnetic field and, in this connec- 
tion, they are not eigenstates of the new, full Hamiltonian. Thus  the problem of the 
definition of the excited state arises. We deal with this interesting question in section 
2. The states, which are usually used as unstable states in such a situation-the 
eigenstates of the Hamiltonian with the interaction term switched off-are not correct, 
physical, dressed states of the system. We postulate, therefore, a certain definition of 
the excited states. Besides, we assume that the full electron propagator in the Coulomb 
potential exhibits, for complex values of the energy, a pole corresponding to the 
resonance, lying on the unphysical sheet of the Riemann surface. Now, we cannot 
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apply ordinary perturbation methods because we would lose time dependences of the 
type e-'.' (the exponential would be expanded too). We will, therefore, make use of 
the Dyson-Schwinger equations for the appropriate Green functions omitting all the 
corrections to the vertices or vacuum polarization type for the external photon legs, 
but still retaining full electron propagators which have appropriate resonance poles. 
In section 3 ,  equipped with the proper definition, we set about evaluating the spatial 
distribution and the time evolution of the cloud surrounding the atom in the excited 
2p,,, state. For that we have to develop a different method of calculation (different 
from that proposed in our work on the ground-state atom), because the expectation 
values of operators in a state, which is not the ground state and even an eigenstate of 
the Hamiltonian, cannot be 'asily transformed into the transition elements known 
from scattering theory. However, luckily, it was possible to derive an identity which 
allowed us to bypass these difficulties and to simplify lengthy calculations. In that 
way, in section 3, we get the distribution and the time dependence of the cloud around 
the physical excited state atom. Thanks to having used an appropriate definition of 
this state, no surface terms of the type S or S', connected with unphysical switching 
on of the interaction, arise (they are always present, when we deal with bare excited 
states). 

The contribution to the energy density (and to the angular momentum density as 
well) arises not only from the virtual cloud, but also from the incoming and outgoing 
real wave. This contribution is considered in section 4. 

2. The definition of the excited state 

While setting about the investigation of the virtual cloud for the hydrogen atom in an 
excited state, we encounter a serious difficulty at the very beginning-the definition 
of a resonance state in quantum field theory, a state of a complicated coupled system: 
source and field. We do not have at our disposal any univocal criterion like, for 
instance, that of being the eigenstate of the total Hamiltonian in the case of the ground 
state. How to choose a proper definition then? In various physical problems where 
excited states come into play, one can proceed in the following way: switch off for a 
moment the interaction responsible for the decay of the unstable state and accept as 
its definition the corresponding eigenstate of the unperturbed, free Hamiltonian. In 
the case of an atom (a  hydrogen atom for instance) one could take as an excited state 
the appropriate atomic eigenstate found in quantum mechanics. In this way, unfortu- 
nately, we fail to solve the problem we are dealing with. By turning off the interaction 
'that causes an atom in an excited state to be unstable, we would simultaneously turn 
off the phenomena that we want to study. We would not have any virtual cloud round 
the atom at all! Both the decay and the formation of the cloud are consequences of 
the interaction of the electron bound in the atom with the quantized electromagnetic 
field. After having switched on the perturbation term, let us say at t = 0, we would not 
observe anything until time t = r / c  where r is the distance to the observation point. 
Only after this time would the virtual cloud occur. (The dressing and undressing 
processes for the ground state were considered in Persico and Power (1987) and 
Compagno et a1 (1988a, b).) In the expression for the energy density we would also 
get terms of the type S or 8' and higher derivatives of S originating from the unphysical 
turning on of the electromagnetic coupling constant at t = 0. 

We are interested here in time evolution and not in transition amplitudes. Moreover, 
we are interested in the evolution for both short and long times. All this requires from 
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us is a definition of an excited state which could describe physics, dressed states, such 
that may occur in reality. As we shall see, however, the bare state is not useless for us. 

The calculation, at least partially, has to be performed 'non-perturbative1y'- 
otherwise time dependence of the type eCrr would be lost. 

Concerning the 2p3,, state, we assume that the full electron propagator has a pole, 
in variable E, corresponding to this resonance, lying on the unphysical sheet of the 
Riemann surface (Moller 1946, Peierls 1955, Levy 1959, Eden et al 1966). Let us write 
the full, renormalized propagator S in the form 

Only the first term is essential for our considerations since the second one cannot 
have a suitable (2p3,,) singularity (Weldon 1976). Let us take the Fourier transform 
(over T) of this expression. 

The situation we have to deal with here is shown on figure 1. The expression (2) 
has a cut from El (i.e. EIS) to infinity. Expression (2) is found for E on the upper-plane 
of the physical sheet ( E  + i ~ ) .  If we now make the analytical continuation to E lying 
in the lower half-plane, we reach for E > El the unphysical sheet where the mentioned 
pole is situated (for complex energy E = E2-iT/2). In order not to complicate the 
picture, we will forget about the 2p,,, and 2s1,, states lying on the energy scale below 
2pS,, but which are of little importance to us. We will consider exclusively the direct 
transitions to the ground state. 

E 2 - i f  

Figure 2. The time behaviour of the virtual cloud. 

-3- 
Figure 1. The E-plane for the Fourier transform 
of the propagator S. 

The electron propagator (2) has much more complicated behaviour in E than a 
simple pole. Some of the non-polar terms vanish when we perform the integrals over 
x and y with the wavefunctions of the 2p3,, state which select from VT and 9 pieces 
of appropriate quantum numbers. 

In the calculations that constitute the content of the following section and of 
appendix 3, the confluence of resonance denominators plays an essential role. This 
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suggests that we confine ourselves to the pole approximation for the propagator S :  
1 

Y0*2(Y)- E - E,+ir,2 
1 

d3x d3y W;(x)(O/W(x) E + i & - H  

where the W2 are wavefunctions and the W are field operators. 
The possible residue is unimportant; by analogy with a stable case we have put it 

equal to unity. 
The aim of this work is not the investigation of the full electron propagator and 

the consequences of its behaviour for the time evolution, but an attempt to describe 
the virtual cloud around the atom in an excited state in the simplest case-when we 
can limit ourselves to the pole (3). It is the consistent, jield theoretical definition of a 
dressed excited state that causes problems. The possible deviations from the time 
behaviour that we get here come from the corrections to our definition and may be 
considered in the future as a further step. 

The formula (3) suggests that we should try to define as a first step the state 12’) 
for whiczthe resonance pole (3) occurs: 

12’) = d3x ~(x)lO)yoWz(x). (4) 

As was the case for the ground state, it turns out that we may take this function from 
ordinary quantum mechanics. And one more remark concerning our notation: the 2p3/, 
state is denoted in short by )2), as in the formula (4), the prime being put in to remind 
us that it is not yet the state we are striving for. The physical ground state, as in the 
preceding paper, is denoted by 11). 

The operator {W+W, constitutes simply a certain creation operator acting on the 
vacuum (W is the full electron field). As we show in appendix 3, the definition (4) 
does not give yet the proper state. It gives just the ‘bare’ 2p3/, (at least from the point 
of view of the virtual cloud far from the atom) but the physical state should not, 
however, be too distant. If we tried to express the ‘bare’ state ~ ~ 3 1 2  through the physical, 
dressed one we would undoubtedly have: 

( 5 )  
The dotts stand for the total remainder which is difficult to write down. If we 

suppose that the physical 2p3I2 state is to be prepared by hitting the ground state atom 
with one photon, we may ask how the state 12’) looks in the same in-basis. (This is the 
question concerning, in fact, the dots in ( 5 ) . )  Certainly it resembles the atom in the 
ground state but together with, possibly, multiphoton states. Let us try, therefore, to 
take from 12’) only the part that is attainable exclusively from the one-photon in states: 

(6) 

It does not mean, however, that the state 12) decomposes simultaneously into only 
one-photon out states. If we would like to force it, this would immediately result in 
complex average values of certain physical operators. 

The above argument leading to (6) is not precise, but as it will turn out in the 
following section, the state 12’) with the projector of (6) actually becomes the ‘dressed’ 
state. The above formula will constitute the definition of the physical, excited state we 
have sought. This is a postulate which may be verified only on the grounds of the 
results that can be obtained with the use of (6). As it seems to us, those obtained in 
the following sections speak in its favour. 

12’) = 12) + . . . . 

12) = C j  /Is, (k, ~ ) i n ) ( l s ,  (k, ~)in12’). 
k,h  



The electromagnetic field around an excited atom 4929 

In appendix 1 we calculate the wavepackets that display the manner in which the 
state 12’) is decomposed into the one-photon in and out states. These wavepackets will 
be useful in the following sections. 

3. The virtual cloud properties 

After the short discussion of the previous section concerning the definition of an excited 
state in quantum field theory, we can now, on the grounds of formula (6), set about 
calculating the quantity 

( 2 l + ( ~ ( r ,  t)’+B(r, t)*)12). 

To this end we start with the quantity 

By appropriate differentiations we can get from this object any combination of the 
fields E and B. In ( 7 )  we consider only the quantum part of the electromagnetic field. 
The classical part coming from the proton also gives its contribution to the full energy 
density. As it is, however, very simple and not very interesting, we will not write it 
here explicitly, taking it into account only in the final formulae. 

Expressions similar to ( 7 )  arise also in appendix 3, where we find the magnetic 
field around the atom. We calculate there all the Feynman diagrams contributing to 
it to the lowest order in e. Here the number of the diagrams contributing to, for instance, 
the energy density is much bigger and therefore we have to proceed another way. Our 
calculation will be performed in stages. First of all we will divide I ” ”  into two parts: 
A and B. 

3.1. Part A of I”” 

Here we exclude the diagrams in which one (or both) of the fields Ap, A” is ‘joined’ 
with one (or both) of the photons q and k (i.e. we do not consider in item A the 
energy density connected with the real wave that excites the atom or is emitted during 
decay). These are taken into account in B. Also we will now consider only the diagrams 
where A” is attached to the electron line to the left of A”. The symmetry {p-v,  x-y} 
will be included at the very end. The expression we are talking about in this subsection 
breaks up into three pieces. 

(i) A” and A” are coupled to the electron line to the right of Inout) (i.e. the 
diagram corresponding to (nout(T(A”(x)A”(y))/Is,  (4, p)in) is connected from the 
point of view of the A”, A”  end election). 

(ii) A ”  couples to the right of Inout) and A’ to the left. 
(iii) Both A” and A” are coupled to the left of Inout). 

Now let us consider these three cases one by one. 
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3.1.1. To order e’ the contribution comes exclusively from the one-photon states 
Inout). Skipping the steps similar to those given in appendix 3, we get 

(Is, (P, a)outlT(A’I(x)A”(v))lls, (4, p)in)as 

= ie4(  J d3w, d4w, d4w3 d3w4 ‘Tr,(w,) e - i ~ w ~ ( ~ ~ ’ y ) 9 2 ( w , )  

X exp[i(p+E1)w3 *2(w2)yT:(w2, w3)yU*2(w3) 
p + E ,  -E,+i(r /2)  

q+E , -E2+i ( r /2 )  
X exp[-i(q+ q 2 ( w 4 )  eiq”4(~$“*y)9,(w4)AF(x - w2)AF(y - w3)  

+ 6r(p-q)S,(ls, OoutiT(A’I(x)A”(y))Jls, Oin). (8) 

The expression (21T(AP(x)A”(y))l2),, (without the symmetry { k e y ,  x-y}) will 
be now called J+””(x, y). We have then 

We introduce here what we have got in (8) and make use of (A2.2). After these 
manipulations we have 
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3.1.2. Here the important contribution is given not only by one-photon states. Without 
going into details as to which other out states should be taken into account in the sum, 
we can always write 

J;:(x, y )  = CJ C j  C j  C j  (2’11s, (4, p)in) J d4z AF(y - z)a,a; eipx$(u) 
k , A  % P  P.U n 

x (Is, (4, p)inlab”,zln - yout)(n - youtlA”(z)(ls, (k,  A)in) 

x (IS, (k, A )inl2’). (11) 

The symbol In - y) means that from the state In) one photon has been taken off, 
or, if there were no photons at all, it gives no contribution to the sum. The d’Alambert 
operator a,a; ensures that A” is not coupled to any photon present in Inout) (the 
d’hlambert operator annihilates such expressions). Those contributions are considered 
in 3.1.3. 

The states In - yout) once again form a complete set, so that the sum may be easily 
performed: 

J ~ , ” ( x ,  y )  = d4z d4w A-(X - w)a,d“,’(y - Z ) ~ , ~ ~ ( Z I A * ( Z ) A ” ( W ) ~ ~ ) A  (12) I 
or 

J;~(x,  y )  = d4z d4w A-(X - w)a,a”,‘(y - ~ ) d p d f  

x[@(w,-z,)J~”(w, z ) + @ ( z , -  w,)Jfqz,  w ) ] .  

I 
3.1.3. Here we move both A* and A” to the left through Inout): 

J:,”(x, y )  = C( C j  CJ (2’11~~ (4, p)in) d4z A-(Y - z)a& 

x I d4w A-(x- w)a,a”,ls, (q,p)inl~(Ag(w)A’(z))ln -2yout) 

x ( n  -2youtlls, (k, A)in)(ls, ( k ,  A)in12’) 

k,A 4.p n 

= I d42 A-(y - z)d,d: d4w A-(x - ~)d,a:JL*~(z, w) .  (14) 

If we gather all the terms together, we come to the following relation for J:”(x, y ) :  

I 
J ~ ” ( x ,  y ) = J z : ( ~ , y ) +  d4w d4z[A-(x- w)d,d”,‘(y-t) I 

xa ,a~(o(w,-zo)Jy(w,  z)+O(zo-  wO)Jy(z, w)) 

+A-(x  - w)d,a$A-(y - z ) d p a ; J L g , ” ’ ( ~ ,  w ) ] .  (15) 

What we have got after all these manipulations? The formula (15) constitutes a 
certain identity which expresses J:’(x, y )  in terms of Jx:(x ,  y )  and of itself. iterating 
(15) and making use of 

d,d,”A-(x) = 0 (16) 
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we obtain 

J ~ ” ( x ,  y )  = J ~ : ( x ,  y )  + d4w d4z[A-(x - w)d,d;AF(y - Z )  I 
xa,d:(o(w,-z,)J’,:(w, z)+O(z,- WO)JiT*(Z, w ) )  

+A-(x - w)d,dZ.A-(y - z)d,d:Ji?*(~, w ) ] .  

Now we see that we do not have to calculate explicitly the terms with more than one 
photon in the out state. Having once performed the task of finding J z : ( x ,  y )  we have 
immediately got the whole of J x ” ( x ,  y ) !  We are not forced to evaluate all the Feynman 
diagrams but only a subgroup of them. In that way we easily obtain 

J;”(x, y )  =ie2  d4w d4z{O(wo) exp[-(r/2)wo]+O(-wo) exp[(I‘/2)wo]} J 
x Q2( W )  Y@sF( w, Z )  Y ”V2( z){@( zo) exp[ - ( r / 2 )  zO1 + - zo) exp[ ( r / 2 )  4 1  
x(AF(x-  w ) A ~ ( ~ - z ) + O ( W ~ - Z ~ ) A - ( X - W ) A ~ ( ~ - Z ) )  

- ie2 d4w d4z{0( wo) exp[-(r/2)wo]+ O(-wo)  exp[(r/2)wol) I 
x q 2 (  w ) Y @Y0sr ( w, z ) YO Y ” 9 2 (  z 1 
x {O(zo) exp[-(r/2)zo1 + @(-zo) e x ~ [ ( r / 2 ) z ~ l 1  

x ( A - ( x -  w ) A - ( ~ - z ) + O ( Z , - W ~ ) A - ( X -  w)A‘(y-z)) 

+ie2 I d4w d4z O(-wo)(l -e‘”o)~l(w”’’S~(w, Z ) Y ’ ~ ~ ( Z )  

x (AF(x- w ) A ~ ( ~ - z ) + O ( W ~ - Z ~ ) A - ( X -  w)AF(y-z)) 

-ie2 d4w d4z O(-wo)(l - e r w ~ ) ~ l ( w ) y @ y o S ~ t ( w ,  z) I 
x y o y ” V l ( ~ ) ( A - ( ~ - ~ ) A - ( y - ~ ) + O ( ~ o -  wO)A-(X- W )  

xAF(y--z))+ie2 d4w d4z ql(w)ywSE(w, z)y”Vl(z)O(zo)  

x (1 -e-r*o)(AF(x - w)AF(y - z)+O(wo- zo)A-(x - w )  

xAF(y-z))- ie2 d4w d4z q l ( w ) y w ’ y o S E t ( w ,  z)yoy”Vl(z)  

x O(zo)(l  -ewrz0)(A-(x- w ) A - ( y  - z )  

+ O ( Z ~ -  w ~ ) A - ( x - w ) A ~ ( ~ - z ) )  (18) 

G”(x ,  y )  = J Z ” ( X ,  Y )  + J?(Y,  X I .  

I 
I 

and of course 

To proceed further we observe that the whole expression (18) breaks up into some 
pieces that can be calculated separately. We will then carry out more detailed calculation 
only for one of them, for the other ones we will write down only final formulae. First 
we deal with the expression that describes the decay (and the excitation) of the 2p 
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state (the first two terms in (18)) leaving for a moment the contribution from the 1 s  
state (the last four terms). This will constitute the contents of item I. Additionally, if 
we use 
S; (W,  z) = -i C{ @ ( W O -  z o ) q y ) ( w ) Q r ) ( z )  + i I{ O(Z, - wo)?!,-)(w)Q~-)(z)  (19) 

the expression I:: divides, in turn, into the contributions from different intermediate 
states. We will consider separately the following cases: 

n+ n 

(a) 
(b) En = E2 

(c) O<En<Ez 
(d) E, <O. 
For each group of states the calculation is carried out in a different manner. We 

do not give the details here and say a few words only on the calculation in case (a). 
We have then: 

r 

( E ,  > € 2 )  

x Q 2 ( w ) ~ % ( w ,  z ) f ’ ~ ~ ( z ) { @ ( z ~ )  exp[-(r/2)z0l + @(-zo) exp[(r/2)zol) 

+ { / . L e v ,  x-y}.  (20) 

x ( O ( W ~ - Z ~ ) A ~ ( X - W ) A ~ ( ~ - Z ) + O ( Z O -  w O ) A - ( X -  w)AR(y-z)) 

Now we can manipulate equation (20) using (A4.1) and (A4.4). The calculation is 
lengthy and we omit it here. The final formula is the following: 

where we have already omitted the higher-order terms. 
To get E and B and to make the dipole approximation we will have to perform 

some differentiations over xo, yo,  x and y .  When they act on the functions @( ) or 
er(  they give zero or higher-order expressions. Therefore in the function describing 
the time evolution we can at once put xo = yo = t and Ix - wI 5 ly  - ZI = r 
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For the cases (b), (c) and (d)  corresponding to other groups of the intermediate 
states in (19) the calculations are worked out in the same spirit. 

In order to simplify the point (b), which otherwise becomes complicated, we have 
already used the symmetry { p - V, x-y} 

x s i n [ w ( ~ x - w ~ + ~ y - z i ) I + { p - ~ ,  x-y). ( 2 5 )  
The second term in (24) is a 'real wave'-type term and we will neglect it here and 
combine it into with I;" of the next section. In the formulae for I:' used henceforth, 
the term in question is already omitted. 

Now we must carry out the same programme for the four last terms in (18) (item 
11). They describe the time-dependent contribution from the atomic 1s state before, 
and the decay to this state after the excitation. This time there are three cases we have 
to deal with: 

(a)  E n '  El 

(b) E n  =E1 

(c) E, < O .  
In order not to lengthen too much the calculational part of this work we give only 

the results. In item (b) we present only the real part which we will be interested in 
and which is much simpler than the whole IzKh: 
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xsin[w(lx- wI+Jy-zI) ]+{p-v ,  x - y ) .  ( 2 8 )  
Having in this manner completed all the pieces of the formula (18 ) ,  we can now, 

by appropriate differentiations, easily get the energy density of the virtual cloud. In 
the dipole approximation and after taking into account the proton contribution to the 
energy density we obtain 

4(E(r, t12)virt 
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where 

w n m = I E n - E m I .  (31) 

The well known (Abramowitz and Stegun 1964) functions f(z) and g(z)  are 
expressed as follows: 

f( z )  = ci( z) sin( z )  -si( z)  cos( z)  

g(  z)  = -ci(z) cos( z)  - si( z )  sin( z)  

(32) 

(33) 

where we use the definitions 

' sin( t )  
si(z) = i, 7 d t  

* cos( t )  
ci(z) = I, 7 dt  

(34) 

(35) 

cj'(mlriln)(nlrklm) ;= C j  ( m ~ r i ~ n ) ( n ~ r k ~ m j  - ~j ( m ~ r i ~ n j ( n ~ r k ~ m ) .  (36) 
n n n 

En > Em En < Em 

We have omitted in (30) the square of (A3.17)-the magnetic moment contribution to 
the energy which has nothing to do with the virtual cloud. 

As we see, the state is already dressed-the time evolution shows that at no moment 
the virtual cloud disappears. This constitutes a kind of the verification of (6). 

To complete the results we also give the expression for the angular momentum 
distribution: 

r i rk  ie2 
x g(2wn2r )  +- 5,.l1 

2 r4 
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In the far (wave) zone approximation where we can make use of the well known 
behaviour of the functionsf and g for large arguments (Abramowitz and Stegun 1964): 

. . .) 
Z 

3! 5! 7! 
g ( z )  =7 1 -7+---+. . , 

Z ( z z4 z6 

these formulae become 

(39) 

The spatial distribution of the cloud is analogous to that obtained in our previous 
paper, the difference originating from the dissimilar geometry of 2p and Is  states. 
There are, therefore, some changes in the angular distribution since 
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The principal feature of the formulae for the 2p state (29), (30), (37), (40), (41) 
and (42) is, however, their time dependence-the rebuilding of the cloud in the course 
of the photon absorption and emission process. The region in space where the cloud 
is such as is required by the geometry of the 2p state moves (in the radial direction) 
with the velocity of light. Its size is determined by the lifetime of the excited state. 
(The situation is shown in figure 2.) Outside, up to the exponential terms e-rr, the 
distribution for the ground state does stand. At no moment is the distribution given 
in the whole of space by the atomic 2p state. This agrees with our expectations 
concerning the physical excited state. Only in the region sufficiently near to the atom 
can the cloud be readjusted before the atom starts to decay. For regions that are more 
distant the information about the excitation comes later. 

The time evolution is symmetric. The process of a photon absorption looks (at least 
from the point of view of the virtual cloud) similar to the process of emission (but 
backward in time). This is due to the excitation accomplished by one photon. (The 
incoming wave is built up of one photon.) 

4. The real wave properties 

In this section we consider only those diagrams of (7) for which at least one of the 
fields A” and A” is attached to the photon k or q (item B). The rule that A” is always 
connected to the left of A“ still holds good: 

(2IT(AC”(X)A”(Y))l2)~s 

=CJCJCJ  ( 2 ’ 1 1 ~ ~  (4, ~ ) i n ) ( l s ,  (4, ~)inlnout)B 
k.A 4.p n 

x (noutlT(A”(x)A”(y))lls, ( k ,  A)in):s(ls, ( k ,  A)in12’) 

=CJC.l(2‘11s, (4, p)in)(ls, (4, p)inlA”(x)lls, oin) 
k A  4.p 

x ( l s ,  ( k ,  A ) i n / 2 ’ ) ~ ; ( ~ ) *  e - i k ~ + ~ l ~ J J  d4z AF(y-z)Jad; 

x (2’(ls, (4, p)in)&i‘P’ eiqx(ls, OoutlA”(z)lls, ( k ,  A)in) 

x ( l s ,  ( k ,  ~)in12’)+xJ’CJ 1 d42 A-(y-z)d,dy(2‘lls, (4, p ) i n } & ~ ” ” e i q x  

k,A 4.p 

k A  9.p 

x ( l s ,  OinlA”(z)lls, (k ,  A)in)(ls, ( k ,  A)inl2’). 

The calculation which can already be called our standard one gives 

Cl ( l s ,  OoutlA”(x)lls, (4, p)in)(ls, (4, p)in/2’) 
4.P 

= e  [ d4w AF(x- w ) ~ , ( w ) y ~ Y 2 ( w ) ( @ ( w o )  exp[--(r/2)w0] 
J 

(43) 
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It is very easy to find all the terms of J g ” ,  because Ils, Oin) = /Is ,  Oout). Saving room, 
we give here only the final result: 

Jg”(x, y)  = -e2 d4w d42 @(-wo) e ~ p [ ( ~ / 2 ) w ~ ] ~ ~ ( w ) ~ ~ 9 ~ ( w ) A ~ ( x -  w )  I 
x {@(zo) exP[-(r/2)zol+ @(-zo) exP[(r/2)zoll 

x q l ( z ) y Y 9 Z ( z ) A R ( y - z ) - e 2  d4w d4z I 
x {@(WO) exP[-(r/2) WO1 + @(-WO)  exP[(r/2) Woll.\i;2(W) Y W Y l (  w)  
xAR(x- w)@(-z0) e x p [ ( ~ / 2 ) z o ] ~ l ( z ) ~ ” ~ z ( ~ ) A ~ ( y  -z )  

+ e 2  I d4w d4z @(-wo) e x p [ ( ~ / 2 ) w o ] . \ i ; 2 ( w ) ~ p 9 1 ( w ) A ~ ( x - w )  

x @(-zo) ex~[(r/2)z~I.\i;~(z)~”~~(z)A+(~ - z). (45) 
If we take into account the remark on (24) we have 

Ig”(x, y)  = e* d4w d4z[{@(wo) exp[-(r/2)wo]+@(-wo) exp[(r/2)wo]} J 
x {@(zo) exP[-(r/2)zo) + @(-zo) exP[(r/2)zoll 
xAR(x- w ) A ~ ( Y - z ) - @ ( - w ~ )  exp[(r/2)wO] 
x {@( zo) exp[ -(r/2)z0] + @( -zo) exp[ (T/2)z0]}A-(x - w) AR( y - z) 

- {@(wo)  exp[-(r/2)w0l + @(-wo) exp[(r/2)wol)@(-z0) 
xexp[(r/2)zo]AR(x- w)A+(y-z)+@(-wo) exp[(r/2)wo] 
x @(-z,) exp[(r/2)zo]A-(x - W ) A + ( Y  - z ) p z ( w ) Y p ~ l ( w )  

x .\i; 1 ( z ) Y 9 2  ( z ) + { P v, x -y 1. (46) 
Below we will calculate the individual parts of (46) 

I&’(x, y)  = e’ d4w d4z @(wo) exp[-(~/2)wo]O(zo) e x p [ - ( ~ / 2 ) ~ ~ ] ~ ~ ( w ) y ~ Y ~ ( w )  I 
x ‘PI( Z )  y v q z (  z ) A ~ ( x  - w)AR( y - Z )  + {p- Y, X-Y} 

x @(xo- lx - wl) exp[i(E2 - El +ir/2)(xo- Ix - w~)]@(Yo- I Y  - 21) 

x exp[-i(Ez - El - i r /2)(yo-  ( y  - z l ) ]  +{p-v, x-y) (47) 

I&;(x, y )  = e2  1 d4w d4z @(wo) exp[-(r/2)w0]@(-zo) e x p [ ( r / 2 ) ~ , ] ’ P ~ ( w ) y ~ 9 ~ ( w )  

x ‘ P I ( z ) ~ ” € ’ , ( z ) ( A ~ ( x  - w)AR( y - Z )  + AR(x - w)A+( y - z ) )+{~-Y,  X-Y} 

x@(x,-Ix- wl) e x p [ i ( E 2 - E l + i ~ / 2 ) ( x o - ~ x - w ~ ) l  
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Ig;,(x, y )  = e2 d4w d4z O(-w,)  exp[(~/2)w,]O(z0) exp[-(r/2)zo]’D2(w)y~Y,(w) 1 
x ‘D,(z)y”Y2(z)(A“(x- w)AR(y - z )  

+ A - ( ~ -  W ) ~ R ( y - Z ) ) + { C L t , V , x t , y }  

I;,;(x, y )  = e d4w d4z O(-w,)  exp[(r/2)wo10(-zo) e x p [ ( ~ / 2 ) z 0 l ‘ Z r 2 ( w ) ~ ” ~ , ( ~ )  2 l  
X ’ P ~ ( Z ) ~ ” Y ~ ( Z ) ( A ” ( X -  w ) A ~ ( Y - z ) - A - ( x -  ~ ) A . ” ( , V - Z )  

-AR(x-  w ) A ’ ( ~ - z ) + A - ( x -  w)A+(y-z ) )+{p++~ ,  X H ~ }  

x 2.rrO(-xo-/x-wl) exp[i(E2- E,-iT/2)(xo+Ix- w / ) l  ( 

eiw2)o sin(w2(y - r l )  dW2 
w2+ E2- E ,+iT/2  

Lumping them together, performing integrals over the oi and neglecting the terms 
of order e 2 r / A E ,  we obtain 

( 5 2 )  
h(z)=exp[i(E,-E,)z](O(z) e x p [ - ( r / 2 ) z ] - ~  i Ei(-i(E,-E2)z) 

and Ei is the integral exponent function. 
If we now want to find the energy density contained in the incoming and outgoing 

waves we meet with some difficulty. The multipolar expansion is of no use close to 
the light cone. The setting of the atomic size equal to zero immediately leads to infinities. 
We have to proceed in a different way. We will investigate the energy density near the 
light cone but not on it, where we would get infinity (for a, = 0). The situation is shown 
on figure 3. 
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Figure 3. The variables describing the incoming and 
Atom outgoing waves. 

At time t the maximum of the wave is situated on the sphere of radius Itl. We 
introduce a new convenient variable in the following way: 

A + A t > O  ( 5 3 )  
r = [  - $ t + A  t < O .  (54) 

Since we are investigating the wave only in the radial direction, we can write 
r = ( 1  ti + A ) $. ( 5 5 )  

About A, which will be now a scalar variable describing the shape of the packet, we 
assume 

a,<< A << r. 
Then the arguments of the function h become simply 

t - l r -  W (  z A i > o  
- t - l r -  W I  A i<O. 

e2  1 
f ( E 2 ) w a v c = a  ( E 2 - ~ 1 ) ~ ( 2 1 ~ ' l l ) ( l l ~ ~ l 2 )  7 

It is now very easy to obtain the formulae for the energy density: 

and  for the angular momentum density: 

( [ *x  ( E :  x B)li)wave 
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The expression (21x'11)( l lxk/2) may be evaluated explicitly (and in consequence also 
the angular dependence of E', B2 and r x ( E  x B ) ) ,  if we use the known wavefunctions 
from quantum mechanics. It has the form 

(2lx'l1)(llxkl2) = N ( 8 l k  - f y k  + i f '& ' ' k )  (61 1 
where N is unessential constant. One can introduce it into (58)-(60), to get the angular 
dependences: 

L I  COS^^) 
r 4x2(  E2 - E1)4A4 

=D[ici,k.^yk cos B ( h ( A ) - h * ( A ) ) - ( j ' - . ^ ' c o s  6 )  
r2 

If we now suppose that A is big in comparison with the wavelength A z l  (but still has 
to be much smaller than r )  and if we use the expansion 

we see that beside the exponential terms connected with the broadening of energy 
level 2 ~ , , ~  there are also certain 'non-causal' tails: 

The fact of the existence of such 'tails' is related to the excitation of the atom by 
one photon. One photon (or even any definite number of photons) cannot lead to a 
state which would give causal evolution for all operators (we mean here particularly 
operators bilinear in fields). The same tails appear in any definition of the excited state 
if we assume the excitation to be accomplished by one photon. 

5. Summary 

In this work we have considered the properties of the electromagnetic field around 
the hydrogen atom in the excited 2p,,, state. The first problem dealt with was the 
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definition of the excited state in quantum field theory. On the basis of the properties 
of the full electron propagator in the external Coulomb potential we have postulated, 
in section 2 a certain definition of this state. This definition (formula (6)) removes the 
unpleasant features of the ‘bare’ excited state like, for instance, surface terms. This 
definition has served in the following sections to find the energy density and the angular 
momentum density in the space around the atom. In the case of the excited state these 
quantities are built of two components: the virtual cloud contribution and the real 
wave contribution. For the virtual cloud we have got in section 3 the spatial distribution 
analogous to that of the ground state. Because of different geometry of 2p and 1s states 
the virtual cloud changes during the process of absorption and emission of the real 
photon. In the far (radiation) zone their dependence is the same as for the ground 
state: 1 p 7 .  

The energy density and the angular momentum density associated with the real 
wave have been found in section 4. I t  was not possible to find them on the light cone 
because of infinities. Out of it the behaviour of these quantities is expressed through 
ordinary and integral exponent functions (formulae (58)-(60)). Far from the light 
cone, we have found, for all the quantities, tails of the type l/A4, where A is the 
distance from the observation point to the maximum of wave position. They are 
connected with the formation of states of one photon. 
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Appendix 1. Some calculational methods used in this work 

In this appendix we would like to calculate the wavepackets that show the manner in 
which state 12’) is decomposed into the one-photon in and out states. We would like 
also to explain the method of approximation used in this work in the place of the 
ordinary perturbation expansion. 

The wavepackets in question are useful in sections 3 and 4 and in appendix 3. We 
do not give the decomposition into the more-than-one-photon states as we will not 
use it. Having used the reduction formulae (for instance Bjorken and Drell 1965, 
Itzykson and Zuber 1978), we find 

(Is, ( k ,  A)outl2’) 

= d3x(ls, ( k ,  A)outl.\Zl(x, O)10)yo*2(x, 0) 

r 
d4x, d4x2 d3x eikxl E :(* )-3cJzl* , ( x2)Dr: (xJ 

= -  J 
x ( 0 IT( ( x2 1 A, ( x 1 ) .\Zl ( x, 0) ) I 0 )  Yo* 2 ( x, 0 1 ( A l . l )  

where D, denotes the Dirac operator in the Coulomb potential. To calculate the 
three-point Green function, which we need now, we cannot make use of the ordinary 
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perturbation method, since, as was already mentioned, we would lose i r / 2  in 
denominators. What we can take advantage of, instead, are Dyson-Schwinger equations 
(Dyson 1949, Schwinger 1951). The equation for the vertex function, written diagram- 
matically, is shown on figure 4. 

Figure 4. The Dyson-Schwinger equation for the vertex function. 

The approximation that we use in the place of the standard perturbation expansion 
consists in retaining only the first term. This means that 

(O(T(.\Ir(x2)Au(x1)‘(x, O))/O)- -e 5 d4w Sg(xz, w ) y ’ ” s ~ ( w ,  x, O)D:,(x, - w )  (A1.2) 

where Sf is the full, renormalized electron propagator and DZa (in our gauge it is 
equal to gpaAF) is the free photon propagator. The same type of approximation was 
applied in section 3 for the higher Green functions. The behaviour of the full propagator 
SE causes the appropriate denominators to now have the ‘good’ form: E - E2 * i r /2 .  

Inserting (A1.2) into (Al . l ) ,  we come to 

(A1.3) 

after having neglected the terms with higher powers of e. In an analogous way we get 

Appendix 2. Various formulae concerning excited state 

= (2’1 Is, (kA )out) + higher-order terms (A2.1) 

Id3u  eiku&~‘A’*‘,(u)y,U,(u) Jd3w e-ikw&f(A).\Tr w 
’( ) Y p * 2 ( w )  exp[i(k+E1)7] (k + El  - Ez - i r /2)(  k + E ,  - E2 + i r /2 )  cs e* 

6 A 

= @( 7) exp[i( E2 + i r / 2 ) ~ ]  + @( - 7) exp[i( E2 - ir/2)~] + 0 (;E) - (‘42.2) 

1 
o + AE + i r / 2 -  w + AE - i r /2  

Jo* dw eiwr ( 
r x  1 

(A2.3) 
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But 

( U  + AE)’+ T2/4 
1 l- ioE d o  eiwr - 

S r J  dw I 

(w+AE)’+T2/4 

In similar way 

d4x V;(x)SE(x, y )  exp[i(k+ E,)xo] i 

(A2.4) 

(A2.5) 

(A2.6) 

(A2.7) 

Appendix 3. The properties of the state 12’) 

Here we would like to show what happens when instead of the state 12) we use 12’). 
Some features of (2’) become visible already in the simple case, linear in A-the 
magnetic field calculation. Let us then find 

I’”’(x) = (2’ld’(x)/2’) = (2‘(AP(x)12’)+A$(x) (A3.1) 

where &‘” is the total field, A$ the classical part of it (proton) and A’” the quantum part. 
Suppose for a moment that xo > 0. If so, let us insert on the left of the field operator 

A’” a complete set of out states (we now consider only the quantum part of &‘-the 
classical part does not give any contribution to the magnetic field). 

I r ’ ( x )  = C j  d3u d3w *;(U, O)(Ol*(u,O)/nout) 

x (nout/T(A’ ( x ) q (  w, O))10)yoV2( w, 0 ) .  

n 

(A3.2) 

We want to calculate this expression in the lowest order of perturbation theory, i.e. 
we expect only one e to stand before everything, e which is connected with the joining 
of A to the electron line (this remark does not concern the widths r also present in 
this expression, which contain e as well, and which have to be treated ‘non-perturba- 
tively’ since they go together with time). In the order in question only one- or two-photon 
out states are involved (plus the atom in the ground state): / ls ,(k,A)out) and 
Ils, ( k ,  A ) ,  (q,  p)out) as illustrated in figure 5. 
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Figure 5. The diagrams thar contribute to (A3.2) in the lowest order in e. The broken 
vertical line expresses the sum over out states. This means that the diagram lying to the 
left corresponds to complex conjugate functions. 

The admission of a greater number of out photons leads to expressions with higher 
powers of e. The diagrams of the figure 5 are of order e and not e3 due to the resonant 
photon exchanged between the left and the right part of the diagrams. The fact that 
the photon has to be resonant to give a diagram of the appropriate order of the 
perturbation expansion, exerts strong influence upon the manner of calculations. We 
will see it clearly while calculating (21Ap(x)12)-the expression (A3.12) and those 
following it. 

I ; ' ( x )  =cj d3u d3w q ; ( u ,  ~ ) @ P ( U ,  o#s, ( k ,  A)out) 

(1% (k, ~)outIT(AP(xx)Q(w, 0))I0)Y0~2(W, 0) 

k, A 

+ c m  J d3U d3W wu, O ) ( O J W ~ ,  0)i ls, ( k ,  A ) ,  (4, p)out) 
4.p 

X f ( b  ( k ,  A ) ,  (4, d o u t l T ( A p ( x ) W J ,  O ) ) l O ) Y 0 ~ 2 ~ ' Z ( w ,  0) 

=;/ d3u d3w * ; ( U ,  O)(Olq(u,  O)/ls, ( k ,  A)out) 

x ( l s ,  (k ,  A)outlT(AYx)Ww, 0))1O)Y092(W, 0) 

x (OI?(*(u, O)Ap(z))lls, (k ,  A)out) 

x (1% ( k ,  A)outl@(w, 0)IO)Y0~,(W, 0) (A3.3) 

where ? denotes the operator of antichronological ordering. After making use of the 
reduction formulae and the Dyson-Schwinger equations in the way described in 
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appendix 1, we get 

x ( + , ( W ) Y ~ E ~ ( ~ )  eikwSL(w, z)y’”SE(z, U, 0 ) y 0 q 2 ( u ,  O)AF(x-z) 

+ ~ , ( w ) y ’ ” S ~ ( w ,  ~ ) y ~ s f ‘ ~ )  eikzSE(z, U, 0)y0*2(u,0)AF(x- w))  

= e 1 d4w O( wo) e-””’i~q,(w)y**\~( w)AF(x - w) 

+ e  5 d4w O(w,)(l -e - ’ -”o)+ , (w,rCIq, (w)AF(x-  w) (A3.4) 

where we have additionally used the formulae (A2.2), (A2.6) and (A2.7). The whole 
calculation is presented here with significant abbreviation. A more complete one will 
be shown in the context of state 12). The second term of (A3.3) can be obtained-from 
(A3.4) by complex conjugation and by replacing the antiFeynman propagator A F  with 
A-. If we also take into account that 

(A3.5) 

we will get for I f  : 

1 
Z f ( X )  = - d3w ~ , ( ~ ) y ~ ~ ~ ( w ) - O ( x ~ - ~ x -  wl) exp[-r(x,-Ix-wl)] 

IX - wl 

x{l  -exp[-r(xo-lx- W O ] ) .  (A3.6) 

We have assumed above that xo > 0. For our purposes it is, however, not essential 
to consider the case xo < 0. Whatever this second term would be, it certainly gives no 
contribution for t E (0, r /  c ) .  We see then that we do not ‘measure’ anything until t = r /  c. 
This is connected with an unsatisfactory definition of the state 12’). If we now calculate 
the magnetic field for which the performing of curl is needed, the surface terms of the 
type 6, spoken of in section 2, will emerge. It is a consequence of the turning on the 
interaction at t = 0. We will not take this calculation further; our aim was only to show 
that the state 12’) is not a physical one. Now we will see, instead, that for 12) defined 
in (6), the above drawbacks disappear: 

Z’”(X) = (2/19yx)/2)  

=CjCS(2’11s, ( k ,  A)in)(ls, (A, A)inlA’”(x)lls, (4, 
k,A 4.p 

x o s ,  (4, p)inI2’)+AXx). (A3.7) 

To get the desired transition amplitude one ought to put to the left of A+(x)  a complete 
set of the out states: 

Zf(x) = CJCSCS(2’11s, ( k ,  A)in)(ls, ( k ,  A)inlnout) 
k , A w  n 

x (noutlAw(x)lls, (4, p)in)(ls, (4, p)inl2’). (A3.8) 
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This time our expression is more complicated than (A3.2)-there are more combinations 
of different photons: in, out and A’”, despite the fact that, as before, only one- and 
two-photon out states are involved in the lowest order in e. The three sums over the 
states give rise to many diagrams (figures 6 and 7) .  

Figure 6. The diagrams contributing to (A3.8) if Inout) is a one-photon state. 

Figure 7. The diagrams contributing to (A3.8) if Inout) is a two-photon state. 

Let us first evaluate the expression Ir . (x)  which corresponds to the one-photon 
out states. We start by calculating the object 

(1% (P, dout lA’”‘ (x) lh  ( k  
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(A3.10) 

In the places marked with arrows we now insert the unit operators expressed in 

S ( ~ ) ( X - Y )  = 1 q, , (~)v ' : (y)  (A3.11) 

the following way: 

n* 

where the v', are the Dirac atomic wavefu1:ctions. 
All the internal photons in the diagrams in figures 6 and 7 have to be associated 

with the transitions 2p-1s; they have ot be the resonant photons. Only then, thanks 
to the confluence of the denominators, may the surplus of e in the numerators be 
cancelled. The appropriate poles arise only when n equals 2 or 1 in the sum (A3.11). 
Using formulae (A2.6) and (A2.7) and retaining only the resonance terms, we come to 

(1% (P, +utlA'"(x)lh ( k ,  

= e3 (I d3w, d4w2 d3w3 q , ( w , )  e - i p w I ( ~ ~ ' y ) v ' 2 ( w l )  

- i  1 d3w1 d4w2 d4w3 q l ( w l )  e - i P w ~ ( & ~ ) y ) v ' 2 ( w 1 )  

exp[i( p + El - k - E,)w:]@( w;  - w ! )  
1 

p + E , - E 2 + i r / 2  
X 

x q2( w2) eikw2( &(kh)*y)v', ( w , ) q 1 (  w 3 )  ~ " v ' ~ (  w3)AF( x - w 3 )  

- i  5 d4w, d 4 w 2 d 3 ~ 3 ~ I ( ~ l ) y p V r l ( ~ I ) @ ( ~ ~ - w ~ )  

x q l ( w 2 )  e - ' " " z ( ~ ~ ' y ) q ~ ( w ~ )  e x p [ i ( p + E , - k - E , ) w ~ ]  

x @ 2 ( w 3 )  e i k w 3 ( & l ; " * ~ ~ ~ 1 ( w 3 )  k + E , -  E,+ir,2 

+6,(p-k)~, , ( ls ,  OoutlAp(x)lls, Oin). (A3.12) 

1 
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To find Iya(x) we must now integrate (A3.9) with the wavepackets (A1.3) and (A1.4) 
after having earlier used (A2.1). There emerge sums of the kind (A2.2) and after having 
performed certain integrals and once again sums (A2.2), we finally come to the formula 

Iya(x) = e d4w(@(wo) e-rwo+@(-wo) erWo)~,(w)y’V2(w)AF(x- w )  

d4w @(-wo)(l  - e r w o ) ~ , ( w ) y * V , ( w ) A F ( x - w )  

+ e  1 d4w @(w,)(l  - e - r w o ) q l ( w ) y p ’ P , ( w ) A F ( x -  w ) .  

5 
+, J  

(A3.13) 

It is only a half of what we want to find-IY,(x) has now to be calculated. One 
can, however, facilitate the job by expressing Irb(x) through IYa(x), which has already 
been found: 
I Y ~ X )  = C j C j C j ~ j ( 2 ‘ 1 1 s ,  (4, p)in)(ls, (4, p)inIls, (P, a) ,  ( l ,  7 ) o ~ t )  

k , A  4.P P . 0  1.7 

xi ( l s ,  ( p ,  U), ( I ,  T)outlA’(x)lls, ( k ,  A)in)(ls, ( k ,  A)in12‘) 

= 1 d42 A-(X - z)a,a: CSCJCJ (2’11s~ (4, p)in) 
k J  q,P P,U 

x (IS, (4, p)inlA’(z)lls, (P, U)out)(ls, (P, U)outlIs, ( k ,   in) 

x ( l s ,  ( k ,  A)inl2’) 
or equivalently 

(A3.14) 

Irb(x) = d4z A-(X - 2)apdzzya*(Z). (A3.15) I 
Now we take both pieces together: I :  = Iya+ l r b :  

Zy(x) = e d4w(@(wo) e-rwo+@(-w,) erwo)q2(w)y’92(w)AR(x- w )  

+ e 1 d4 w[O( - wo)( 1 - erwo) + @( wo)( 1 - e-rwo)] 

X’P, (W)~’’P , (W)A~(X - W )  

J 

1 =L 1 d3w ~ 2 ( ~ ) y ~ V z ( ~ ) - { ( O ( x o - ~ ~ - ~ ~ )  exp[-r(x,-Ix-wl)] 
47r Ix - WI 

1 
d3 w ‘PI( W )  y’’Pl( W )  - [[O(X, - ) X  - w)) 

Ix - Wl 

In contradistinction to (A3.6), this expression is valid now for all times. It is very 
nice to observe how both terms of (A3.16) come out automatically. It was sufficient 
to assume that the propagator S has a pole and the Feynman diagrams of the figures 
6 and 7 give all we would expect: the excitation and the decay of the 2p state and the 
1s state before and after excitation. As before, we got in (A3.16) the retarded propa- 
gators; the time evolution, however, now has no hole between - r / c  and r / c !  This 
suggests that the definition of the excited state ( 6 )  actually works. 
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Having derived (A3.16) we can easily obtain the magnetic field. This time no S 
type terms arise. As the wavefunctions 'P2 are known, we only have to perform the 
integrals over the source distribution, getting 

(A3.17) 

where 2 in the first term comes from 

L 2 + 2 S 2 = 1 + 2 x f = 2 .  (A3.18) 

For the second term we have 

L, + 2s,  = 0 + 2 x t = 1. (A3.19) 

In (A3.17) j is a unit vector in the direction of the overall angular momentum. 

Appendix 4. Different relations and representations for propagators A used in the 
work 

dw{exp[iw(lx/ - xo+ i ~ ) ]  + exp[iw(/xl+ X O + ~ E ) ] )  
1 "  

AF(x) =- 
8 ~ ~ 1 x 1  1 0  

A'(x)=- jox dw { exp[ iw ( xo - 1x1 + i~ )] + exp[ iw ( - ] X I  - xo + i ~ ) ] )  
8 ~ ~ 1 x 1  

A-( X )  = - loz d w  {exp[iw ( xo - 1x1 + i~ ) ]  - exp[iw (1x1 + xo + i ~ ] ) )  
87r2/x/ 

AF( X )  + A-(  x) = A"( x)  

A ~ ( x )  = A ~ ( ~ )  + ~ " ( x )  - A ~ ( ~ )  

A + ( x )  = -A-(x) - AA(x) + A"(x). 
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